A conformationally restricted uniconazole analogue as a specific inhibitor of rice ent-kaurene oxidase, CYP701A6.
نویسندگان
چکیده
The plant growth retardant uniconazole (UNI), which has been used as an effective inhibitor of ent-kaurene oxidase (CYP701A) involved in gibberellin biosynthesis, also strongly inhibits ABA 8'-hydroxylase (CYP707A), a key enzyme in abscisic acid catabolism. Azole P450 inhibitors bind to the P450 active site by both coordinating to the heme-iron atom via an sp(2) nitrogen and interacting with surrounding protein residues through a lipophilic region. We hypothesized that poor selectivity of UNI may result from its small molecular size and flexible conformation that allows it to fit into active sites differing in size and shape. To find a selective inhibitor of CYP701A based on this hypothesis, we examined inhibitory activities of three types of UNI analogues, which were conformationally constrained, enlarged in width, and enlarged in length, against recombinant rice CYP701A6 and Arabidopsis CYP707A3. Conformationally restricted analogues, UFAP2 and UFAP2N, inhibited CYP701A6 as strongly as UNI, whereas it inhibited CYP707A3 less than UNI.
منابع مشابه
Abscinazole-F1, a conformationally restricted analogue of the plant growth retardant uniconazole and an inhibitor of ABA 8'-hydroxylase CYP707A with no growth-retardant effect.
To develop a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase, a key enzyme in the catabolism of ABA, a plant hormone involved in stress tolerance, seed dormancy, and other various physiological events, we designed and synthesized conformationally restricted analogues of uniconazole (UNI), a well-known plant growth retardant, which inhibits a biosynthetic enzyme (ent-kaurene oxidase) of...
متن کاملAbscinazole-E1, a novel chemical tool for exploring the role of ABA 8'-hydroxylase CYP707A.
We developed abscinazole-E1 (Abz-E1), a specific inhibitor of abscisic acid (ABA) 8'-hydroxylase (CYP707A). This inhibitor was designed and synthesized as an enlarged analogue of uniconazole (UNI), a well-known plant growth retardant, which inhibits a gibberellin biosynthetic enzyme (ent-kaurene oxidase, CYP701A) as well as CYP707A. Our results showed that Abz-E1 functions as a potent inhibitor...
متن کاملEndogenous diterpenes derived from ent-kaurene, a common gibberellin precursor, regulate protonema differentiation of the moss Physcomitrella patens.
Gibberellins (GAs) are a group of diterpene-type plant hormones biosynthesized from ent-kaurene via ent-kaurenoic acid. GAs are ubiquitously present in seed plants. The GA signal is perceived and transduced by the GID1 GA receptor/DELLA repressor pathway. The lycopod Selaginella moellendorffii biosynthesizes GA and has functional GID1-DELLA signaling components. In contrast, no GAs or functiona...
متن کاملAn overview of gibberellin metabolism enzyme genes and their related mutants in rice.
To enhance our understanding of GA metabolism in rice (Oryza sativa), we intensively screened and identified 29 candidate genes encoding the following GA metabolic enzymes using all available rice DNA databases: ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxi...
متن کاملInvestigating the evolution of cytochromes P450 involved in GA biosynthesis
Vascular plants invariably contain a class II diterpene cyclase (EC 5.5.1.x), as an entcopalyl diphosphate synthase is required for gibberellin phytohormone biosynthesis. This has provided the basis for evolution of a functionally diverse enzymatic family. A bifunctional diterpene synthase was characterized from the lycophyte Selaginella moellendorffii. The structure of its product, labda-7,13E...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioorganic & medicinal chemistry letters
دوره 22 9 شماره
صفحات -
تاریخ انتشار 2012